vendredi, septembre 19, 2025

Artificial Intelligence - A Guide for Thinking Humans Melanie Mitchell

 


Part One Background

Chapter 1 The Roots of Artificial Intelligence

  • The concept of supervised learning is a key part of modern AI.
  • Training set. Test set.
  • Perceptron learning algorithm.
  • Even at beginning, AI suffered from a hype problem approach.
  • "Easy things are hard" dictum: the human workers are hired to perform the "easy" tasks that are currently too hard for computers.

Chapter 2 Neural Networks and the Ascent of Machine Learning

  • rebutted: réfuter
  • to soar: monter en flèche
  • pep: vitalité
  • imbued: imprégné
  • disparagingly: de façon désobligeante
  • "activation"
  • "back-propagation"
  • I trained both a perceptron and a two-layer neural network, each with 324 inputs and 10 outputs, on the handwritten-digit-recognition task, using sixty thousand examples, and then tested how well each was able to recognize ten thousand new examples.
  • The term "connectionist" refers to the idea that knowledge in these networks resides in weighted connections between units.

Chapter 3 AI Spring

  • overlord: chef suprême
  • eerily: sinistrement
  • pun: jeux de mots
  • derogatory: désobligeant
  • tout: racoler
  • shallow: superficiel
  • self-awareness: conscience de soi
  • dogged: obstiné
  • contrivance: dispositif
  • ergo: par conséquent
  • to imbue: imprégner
  • to spur: inciter
  • to scoff at: se moquer de
  • glaringly: extrêmement
  • malevolent: malveillant
  • to ascribe: attribuer
  • wryly: ironiquement 
  • rapture: extase
  • post-haste: en toute hâte 
  • conscripted: appeler
  • dire: pressant
  • to relent: céder
  • a scant: peu de
  • surfeit: excès
  • to straddle: enfourcher
  • zaniest: loufoque
  • ploy: stratagème
  • stung: piqûre
  • wagering: pari
  • foil: faire-valoir
  • wherein: où
  • harbinger: messager
  • bearing: position
  • The terms narrow and weak are used to contrast with strong, human-level or full-blown AI (sometimes called AGI, or Artificial General Intelligence).
  • We're back to the philosophical question I was discussing with my mother: is there a difference between 'simulating a mind' and 'literally having a mind'?
  • Ray Kurzweil, who is now director of engineering at Google.
  • Singularity: "a future period during which the pace of technological change will be so rapid, its impact so deep, that human life will be irreversibly transformed".
  • Kurzweil agrees: "most of the brain's complexity comes from its own interaction with a complex world. Thus, it will be necessary to provide an artificial intelligence with an education just as we do with a natural intelligence.
  • Kurzweil's thinking has been particularly influential in the tech industry, where people often believe in exponential technological progress as the means to solve all of society's problems.
  • Kapor: "Perception of and physical interactions with the environment is the equal partner of cognition in shaping experience...Emotions bound and shape the envelope of what is thinkable"
  • Crucial abilities underlying our distinctive human intelligence, such as perception, language, decision-making, common sense reasoning and learning.

Part Two Looking and Seeing

Chapter 4 Who, What, When, Where, Why

  • The neural networks dominating deep learning are directly modeled after discoveries in neuroscience.
  • Today's most influential and widely used approach: convolutional neural networks, or (as most people in the field call them) ConvNets.
  • This calculation - multiplying each value in a receptive field by its corresponding weight and summing the results - is called a convolution. Hence the name "convolutional neural network".
  • Would you like to experiment with a well-trained ConvNet? Simply take a photo of an object, and upload it to Google's "search by image" engine. Google will run a ConvNet on your image and, based on the resulting confidences (over thousands of possible object categories), will tell you its "best guess" for the image.

Chapter 5 ConvNets and ImageNet

  • bunch: groupe
  • updended: renversé
  • jolt: soubresaut
  • snooping: fouiner
  • terse: sec
  • stuffed: empaillé
  • to tease out: extraire
  • Yann LeCun, the inventor of Convnets.
  • A cardinal rule in machine learning is "Don't train on the test data". It seems obvious.
  • It turns out that the recent success of deep learning is due less to new breakthroughs in AI than the availability of huge amounts of data (thank you, internet!) and very fast parallel computer hardware.
  • Facebook labelled your uploaded photos with names of your friends and registered a patent of classifying the emotions behind facial expressions in uploaded photos.
  • ConvNets can be applied to video and used in self-driving cars to track pedestrians, or to read lips and classify body languages. Convnets can even diagnose breast and skin cancer from medical images, determine the stage of diabetic retinopathy, and assist physicians in treatment planning for prostate cancer.
  • It could be that the knowledge needed for humanlike visual intelligence - for example, making sense of the "soldier and dog" photo at the beginning of the previous chapter - can't be learned from millions of pictures downloaded from the web, but has to be experienced in some way in the real world.

Chapter 6 A Closer Look at Machines That Learn

  • to veer: virer
  • speckling: moucheté
  • repellent: répulsif
  • skewed: faussé
  • inconspicuous: qui passe inaperçu
  • whack-a-mole: jeu du chat et de la souris
  • adversarial: conflictuel
  • ostrich: autruche
  • I'll explore how differences between learning in ConvNets and in humans affect the robustness and trustworthiness of what is learned.
  • The learning process of ConvNets is not very humanlike.
  • The most successful ConvNets learned via a supervised-learning procedure: they gradually change their weights as they process the examples in the training set again and again, over many epochs (that is, many passes through the training set), learning to classify each input as one of a fixed set of possible output categories.
  • Demis Hassabis, co-founder of Google DeepMind.
  • Deep learning requires big data.
  • Have you ever put a photo of a friend on your Facebook page and commented on it? Facebook thanks you!
  • Deep learning, as always, requires a profusion of training examples.
  • Upon purchase of a Tesla vehicle, must agree to a data-sharing policy with the company.
  • Requiring so much data is a major limitation of deep-learning today. Yoshua Bengio, another high-profile AI researcher, agrees: "We can't realistically label everything in the world and meticulously explain every last detail to the computer. "
  • The term unsupervised learning refers to a broad group of methods for learning categories or actions without labelled data.
  • In machine-learning jargon, Will's network "overfitted" to its specific training set.
  • They are overfitting to their training data and learning something different from what we are trying to teach them. 
  • Commercial face-recognition systems tend to be more accurate on white male faces than on female or non white faces. Camera software for face detection is sometimes prone to missing faces with dark skin and to classifying Asian faces as "blinking".
  • The spread of real-world AI systems trained on biased data can magnify these biases and do real damage.
  • Should the data sets being used to train AI accurately mirror our own biased society - as they often do now - or should they be tinkered with specifically to achieve social reform aims? And who should be allowed to specify the aims or do the tinkering.
  • More generally, you can often trust that people know what they are doing if they can explain to you how they arrived at an answer or a decision.
  • The dark secret at the heart of AI.
  • Ian Goodfellow, an AI expert who is part of the Google Brain team, says, "Almost anything bad you can think of doing to a machine-learning model can be done right now...and defending it is really, really hard".
  • It's misleading to say that deep networks "learn on their own" or that their training is "similar to human learning". Recognition of the success of these networks must be tempered with a realization that they can fail in unexpected ways because of overfitting to their trains data, long-tails effects and vulnerability to hacking.
  • The formidable challenges of balancing the benefits of AI with the risks of its unreliability and misuse.

Chapter 7 On Trustworthy and Ethical AI

  • tipsy: pompette
  • sobering: qui donne à réfléchir
  • menial: subalterne
  • rickshaw: pousse-pousse
  • to canvass: sonder l'opinion
  • creepy: horreur
  • hamstrung: couper les tendons d'Achille
  • spur: voie secondaire
  • staple: de base
  • contrived: imaginé
  • Facebook, for example, applies a face-recognition algorithm to every photo that is uploaded to its site, trying to detect the faces in the photo and to match them with known users (at least those users who haven't disabled this feature)
  • Privacy is an obvious issue. Even if I'm not on Facebook (or any other social media platform with face recognition), photos including me might be tagged and later automatically recognized on the site, without my permission.
  • "We deserve a world where we're not empowering governments to categorize, track and control citizens"
  • My own opinion is that too much attention has been given to the risks from superintelligent AI and far too little to deep learning's lack of reliability and transparency and its vulnerability to attacks.

PART THREE Learning to Play

Chapter 8 Rewards for Robots

  • preposterously: absurde
  • nagging: tenace
  • covertly: secrètement
  • oblivious: inconscient
  • wag: remuer
  • puddle: flaque
  • awash: inondé
  • wry: ironique
  • treat: friandise
  • "Reward behavior like and ignore behavior I don't"
  • Operant conditioning inspired an important machine-learning approach called reinforcement learning. Reinforcement learning contrasts with the supervised learning method.
  • Reinforcement learning requires no labelled training examples. Instead, an agent - the learning program - performs actions in an environment (usually a computer simulation) and occasionally receives rewards from the environment.
  • Reinforcement learning: learning too much at one time can be detrimental.
  • Q-learning
  • Exploration versus exploitation balance

Chapter 9 Game On

  • stance: position
  • paddle: pagaie
  • to tally up: faire le total
  • devious: sournois
  • windfall: aubaine
  • gobsmacked: estomaqué
  • pruning: élagage
  • In reinforcement learning we have no labels.
  • Learning a guess from a better guess.
  • Three all-important concepts: the game tree, the evaluation function and learning by self-play.
  • AlphaGo acquired its abilities by reinforcement learning via self-play.
  • The program chooses moves probabilistically.
  • AlphaGo learns by playing against itself over many games.
  • With its AlphaGo project, DeepMind demonstrated that one of AI's long-time grand challenges could be conquered by an inventive combination of reinforcement learning, convolutional neural networks and Monte Carlo tree search.

Chapter 10 Beyond Games

  • imbuing: imprégner
  • adversarial: conflictuel
  • prowess: talent
  • pesky: fichu
  • Unlike supervised learning, reinforcement learning holds the promise of programs that can truly learn on their own, simply by performing actions in their "environment" and observe the outcome.
  • How to think better: how to think logically, reason abstractly and plan strategically.
  • Andrej Karpathy, Tesla's director of AI

PART FOUR Artificial Intelligence Meets Natural Language

Chapter 11 Words, and the Company They Keep

  • to surmise: présumer
  • beak: bec
  • bent out of shape: upset and angry
  • mind-boggling: impressionnant
  • to impinge: empiéter
  • wit: esprit
  • alluring: séduisant 
  • to seep through: suinter
  • You shall know a word by the company it keeps.
  • In linguistics, this idea is known more formally as distributional semantics.
  • The semantic of words might actually require many dozens if not hundred of dimensions.
  • It turns out that using word vectors as numerical inputs to represent words, as opposed to the simple one-hot scheme, greatly improves the performance of neural networks in NLP tasks.
  • "word2vec": shorthand for "word to vector".
  • You shall know a word by the company it keeps.
  • The idea is to train the word2vec network to predict what words are likely to be paired with a given input word. Word vectors are also called word embeddings.
  • Let's remember that the goal of this whole process is to find a numerical representation - a vector - for each word in the vocabulary, one that captures something of the semantics of the word.

Chapter 12 Translation as Encoding and Decoding

  • mildew: moisissure, mildiou
  • cringe: avoir un mouvement de recul
  • spurred: incité
  • jarring: qui secoue
  • dazzled: éblouir
  • wrongheaded: erroné
  • gist: sens général
  • Encoder, Meet Decoder
  • Long short-term memory, LTSM units: the idea is that these units allow for more "short-term" memory that can last throughout the processing of the sentence.
  • To measure the quality of a translation, BLEU essentially counts the number of matches - between words and phrases of varying lengths.
  • My general experience is that the translation quality of, say, Google Translate declines significantly when it is given whole paragraphs instead of single sentences.
  • While the skeletal meaning of this story comes through, subtle but important nuances get lost in all the translations.
  • The main obstacle is this: like speech-recognition systems, machine-translation systems perform their task without actually understanding the text they are processing.
  • "Machine translation...often involves problems of ambiguity that can only be resolved by achieving an actual understanding of the text - and bringing real-world knowledge to bear".
  • The images were downloaded from repositories such as Flickr.com, and the captions for these images were produced by humans - namely, Amazon Mechanical Turk workers, who were hired by Google for this study.
  • I'm certain that these systems will improve as researchers apply more data and new algorithms. However, I believe that the fundamental lack of understanding in caption-generating networks inevitably means that, as in language translation, these systems will remain untrustworthy.

Chapter 13 Ask Me Anything

  • lodestar: guide
  • puns: jeu de mots
  • godsend: aubaine
  • uncanny: mystérieux
  • stunt: acrobatie
  • parlour: petit salon
  • dearth: manque
  • bestowing: conférer
  • to suss out: piger
  • dubious: douteux
  • to vie: concourir
  • to forestall: prévenir
  • inching: avancer doucement
  • adversarial: conflictuel
  • adversary: adversaire
  • nefarious: abominable
  • Overpromising and under-delivering are, of course, an all-too-common story in AI.
  • The Winograd schemas are designed precisely to be easy for humans but tricky for computers.
  • It seems to me to be extremely unlikely that machines could ever reach the level of humans on translation, reading comprehension and the like by learning exclusively from online data, with no real understanding of the language they process.
  • Language also relies on commonsense knowledge of the other people with whom we communicate.

PART FIVE The Barrier of Meaning

Chapter 14 On Understanding

  • endowed: doté
  • insight: perspicacité
  • bland: fade
  • teeming: grouillant
  • fraught: tendu
  • what the heck? : c'est quoi ce bordel ?
  • indulge: céder
  • pun: jeu de mots
  • yucky: dégoutant
  • libel: diffamation
  • feat: exploit
  • Humans, in some deep and essential way, understand the situations they encounter, whereas no AI system yet possesses such understanding. While sate-of-the-art AI systems have nearly equalled (and in some cases surpassed) humans on certain narrowly defined tasks, these systems all lack grasp of the rich meanings humans bring to bear in perception, language and processing.
  • Psychologists have coined a term - intuitive physics - for the basic knowledge and beliefs humans share about objects and how they behave. As very young children, we also develop intuitive biology: knowledge about how living things differ from inanimate objects.
  • Because humans are a profoundly social species, from infancy on we additionally develop intuitive psychology: the ability to sense and predict the feelings, beliefs and goals of other people.
  • Simulations appear central to the representation of meaning.
  • For example, Lakoff and Johnson note that we talk about the abstract concept of time using terms that apply to the more concrete concept of money: You "spend" or "save" time. You often "don't have enough time".
  • "I was given a warm welcome", "She gave me an icy stare", "He gave me the cold shoulder". Such phrasings are so ingrained that we don't realize we're speaking metaphorically. These metaphors reveal the physical basis of our understanding of concepts.
  • Abstraction and analogy.
  • Analogy-making in a very general sense as "the perception of a common essence between two things".
  • "Without concepts there can be no thought, and without analogies there can be no concepts"
  • Everyone in AI research agrees that core commonsense knowledge and the capacity for sophisticated abstraction and analogy are among the missing links required for future progress in AI.

Chapter 15 Knowledge, Abstraction and Analogy in Artificial Intelligence

  • elusive: insaisissable
  • rut: ornière
  • commonsense: du bon sens; sensé; raisonnable
  • imbue: imprégner
  • mind-boggling: impressionnant
  • grappling: s'agripper
  • Lenat concluded that rule progress in AI would require machines to have common sense.
  • Unwritten knowledge that humans have.
  • Our commonsense knowledge is governed by abstraction and analogy.
  • AI research often uses so-called microwords - idealized domains, such as Bongard problems, in which a researcher can develop ideas before testing them in more complex domains.
  • Conceptual slippage, an idea at the heart of analogy-making.
  • The concept of website slipped to the concept of wall, and the concept of writing a blog slipped to the concept of spray-painting graffiti.
  • Have you ever struggled unsuccessfully to solve a problem, finally recognizing that you have been repeating the same unproductive thought process? This happens to me all the time; however, once I recognize this pattern, I can sometimes break out of the rut.
  • "We Are really, Really Far Away"
  • The modern age of artificial intelligence is dominated by deep learning, with its triumvirate of deep neural networks, big data and ultrafast computers.
  • A small segment of the AI community has consistently argued for the so-called embodiment hypothesis: the premise that a machine cannot attain human-level intelligence without having some kind of body that interacts with the world.

Chapter 16 Questions, Answers and Speculations

  • jaywalk: traverser en dehors des clous
  • dart across: foncer
  • inconspicuous: qui passe inaperçu
  • pesky: fichu
  • oxymoron: réalité paradoxale; exemple "mort-vivant"
  • bewildering: déroutant
  • beset: frappé
  • ballparked: approximatif
  • to elude: échapper
  • witty: plein d'esprit
  • elusive: insaisissable
  • vexing: épineux
  • foibles: manies
  • addle: embrouillé
  • headlong: tête la première
  • The sort of core intuitive knowledge : intuitive physics, biology and especially psychology.
  • It's worth remembering the maxim that the first 90 percent of a complex technology project takes 10 percent of the time and the last 10 per cent takes 90 per cent of the time.
  • I believe that it is possible, in principle, for a computer to be creative.
  • I've seen numerous computer-generated artworks that I consider beautiful.
  • The creativity results from the teamwork of human and computer: the computer generates initial artworks and then successive variations, and the human provides judgment of the resulting works which comes from the human's understanding of abstract artistic concepts.
  • "Human intelligence is a marvelous, subtle, and poorly understood phenomenon. There is no danger of duplicating it anytime soon"
  • "Prediction is hard, especially about the future"
  • The annoying limitations of humans, such as our slowness of thought and learning, our irrationality and cognitive biases, our susceptibility to boredom, our need for sleep and our emotions, all of which get in the way of productive thinking.
  • Above all, the take-home message from this book is that we humans tend to overestimate AI advances and underestimate the complexity of our own intelligence.
  • AI systems are brittle; that is, they make errors when their input varies too much from the examples on which they've been trained.
  • We tend to anthropomorphize AI systems: we impute human qualities to them and end up overestimating the extent to which these systems can actually be fully trusted.

lundi, septembre 15, 2025

Gödel Ester Bach - Douglas Hofstadter

 

Chapitre XI Cerveaux et pensées

  • Ça n'est donc pas une si mauvaise idée, cette analogie entre le cerveau et une fourmilière.
  • Cette idée de l'existence du général dans le particulier est d'une très grande importance.
  • Les créatures fantastiques de notre logiciel cérébral qui naissent des étranges mélanges d'idées qui s'éveillent quand le corps s'endort.
  • Il faut trouver une explication des activations de haut niveau des symboles qui ne s'appuie pas sur les phénomènes neuraux de bas niveau. Si c'est possible (et c'est une supposition essentielle des travaux actuels en intelligence artificielle) alors le cerveau ne serait pas l'unique support matériel de l'intelligence.
  • Si, par contre, il n'existe aucun moyen d'effectuer des séquences d'activation de symboles sans avoir tout le matériel neutronique (que ces neurones soient réels ou simulés), c'est que l'intelligence est en fait un phénomène propre aux cerveaux et beaucoup plus difficile à comprendre qu'un phénomène devant son existence à une hiérarchie de lois de niveaux différents.
  • Aux chapitres XVIII et XIX qui traitent de l'intelligence artificielle.

Chapitre XVIII Intelligence artificielle : passé

  • MIU : un alphabet, des axiomes, 4 règles de production. Théorème de Gödel : tu dois sortir du jeu et y réfléchir de l'extérieur pour le comprendre.
  • Comment pouvez-vous savoir si ce que vous faites n'est pas parfaitement futile ?
  • Cela ne signifie pas pour autant qu'il est impossible d'avoir une intuition de ce qui est ou n'est pas une voie prometteuse.
  • On a un objectif global qui, localement, sert de guide. Une des techniques qui ont été mises au point pour convertir des objectifs globaux en stratégies locales de recherche de dérivations est appelée réduction des problèmes.
  • Vous remarquerez que tout dépend de la façon de se représenter "l'espace du problème", c'est à dire de ce qui est perçu comme une réduction du problème (mouvement en avant vers l'objectif global), et de ce qui est perçu comme un grossissement du problème (mouvement éloignant de l'objectif).
  • Et quand l'espace du problème est légèrement plus abstrait que l'espace physique, les humains ne savent souvent pas plus que faire que les chiens qui s'assoient et se mettent à aboyer.
  • D'une certaine façon, tous les problèmes sont des versions abstraites du problème du chien et de l'os.
  • Les solutions impliquant la restructuration de l'espace du problème se présentent le plus souvent à l'esprit comme un éclair de compréhension que comme le résultat d'une série de processus mentaux lents et délibérés. Ces éclairs d'intuition proviennent probablement du coeur même de l'intelligence, et leur source est, inutile de le dire, un secret jalousement protégé de notre cerveau.
  • Ce qui fait, en tout cas, cruellement défaut à l'IA, ce sont des programmes capables de "prendre du recul" pour regarder ce qui se passe et, munis de ces informations, de se réorienter vers le but recherché.
  • Y-a-t-il dans nos vies des situations très répétitives que nous appréhendons caque fois de façon tout aussi stupide parce que nous avons pas une vue assez globale pour percevoir leur similitude ? Voilà qui nous ramène à ce problème récurrent : "Qu'est-ce que la similitude ?" Nous le retrouverons en tant que thème de l'IA lorsque nous parlerons de la reconnaissance des formes.
  • Il s'appuie sur un grand nombre d'aptitudes différentes, comme doit le faire l'intelligence en général : un vaste recueil de connaissances, la technique de réduction des problèmes, un grand nombre de méthodes heuristiques, plus quelques astuces spéciales.
  • La conscience analogique, qui est un aspect crucial de l'intelligence humaine.
  • Quand une personne oublie quelque chose, cela signifie vraisemblablement qu'un pointeur de haut niveau a été perdu, et non pas que des informations ont été effacées ou détruites. Cela montre qu'il est extrêmement important de prendre note de la façon dont vous stockez de nouvelles expériences, car vous ne pouvez pas savoir à l'avance dans quelles circonstances, ou sous quel angle, vous voudrez extraire des informations de votre cerveau.
  • Un principe général : quelque chose devient ennuyeux non pas quand vous avez épuisé son répertoire de comportement, mais quand vous avez défini les limites de l'espace contenant son comportement.
  • Pourquoi certaines musiques sont-elles beaucoup lus profondes et beaucoup plus belles que d'autres ? C'est parce que leur forme est expressive, en tout cas pour certaines régions étranges de notre inconscient.
  • Il est extrêmement intéressant que, dans le langage naturel, la syntaxe et la sémantique soient étroitement enchevêtrés.
  • Ce type de décision se présente constamment : combien de niveaux devrait avoir un système ? Quelle quantité et quel type d'"intelligence" devraient être placés à quel niveau ? Ce sont là quelques-uns des problèmes les plus ardus auxquels l'IA doit actuellement faire face.

Chapitre XIX Intelligence artificielle : avenir

  • Je pense que les "quasi" situations et les situations hypothétiques inconsciemment forgées constituent l'une des plus riches sources potentielles de compréhension de l'organisation et de la classification des perceptions de l'être humain.
  • Songez à quel point nos vies mentales seraient pauvres si nous n'étions pas doués de ce pouvoir créatif de nous glisser hors de la réalité pour plonger dans de douces suppositions ! Du point de vue de l'étude des processus de réflexion humains, ce glissement, ou déplacement, est très intéressant, car il se produit la plupart du temps inconsciemment, ce qui signifie que l'observation des déplacements et des non-déplacements est très révélatrice de ce qu'est l'inconscient.
  • Une des principales fonctions du réseau de concepts est de permettre de modifier légèrement des idées fausses pour les transformer en variantes qui peuvent être correctes.
  • Essayer les idées récentes qui ont marché.
  • Malaphore : recombinaison d'idées.
  • Question : Un ordinateur pensant pourra-t-il additionner rapidement ? Réflexion : Peut-être pas. "Je pense, donc je n'ai pas accès au niveau auquel je somme".
  • La véritable intelligence dépend intimement d'une capacité d'appréhension globale de son environnement, c'est à dire d'une possibilité programmée de "sortir du système", tout au moins à peu près dans la mesure où nous avons, nous, cette possibilité. Or, une fois qu'un programme aura cette capacité, vous ne pourrez plus le retenir ; il aura dépassé le point critique, et il ne vous restera plus qu'à faire face aux conséquences de ce que vous aurez créé.
  • Nous restons exactement les mêmes bien que des milliers de neurones meurent chaque jour.

ChapitreXX Boucles Étranges ou Hiérarchies Enchevêtrées

  • Le pionnier de la cybernétique, Norbert Wiener. Science des communications et de la régulation des informations.
  • Hiatus : manque de continuité, coupure.
  • épistémologie : branche de la philosophie qui s'intéresse à la connaissance scientifique.
  • immixtion : action de s'immiscer 

  • Vous avez bien un sens des désirs qui découle du substrat physique de votre esprit.
  • Une des questions centrales de ce livre serait "les mots et les pensées suivent-ils des règles formelles ? ". Un des grands objectifs de ce livre est de mettre en évidence les multiples niveaux de l'esprit/cerveau, et j'ai essayé de montrer pourquoi l'ultime réponse à cette question est : "oui, à condition de descendre au plus bas niveau, le matériel, pour trouver les règles".
  • En fait les règles de fond ne changent pas. Les neurones agissent toujours selon le même processus simple.
  • Vous avez accès à vos pensées, mais pas à vos neurones. Les règles logicielles de différents niveaux peuvent changer, mais les règles matérielles ne le peuvent pas et, en fait, c'est justement de leur rigidité que découle la souplesse du logiciel !
  • Comment la conscience surgit de la jungle des neurones.
  • Les gens ont un sens intuitif de la signification des faits parce que ils ont dans leurs cerveaux un matériel intégré qui incorpore des méthodes rudimentaires d'interprétation des faits.
  • Mon idée là-dessus, c'est que le processus selon lequel nous décidons de ce qui est valide ou de ce qui est vrai est un art, et qu'il s'appuie aussi fermement sur un sens de la beauté et de la simplicité que sur des principes profondément enracinés de la logique, du raisonnement, ou de tout autre phénomène qui peut être objectivement formalisé.
  • Théorème de Gödel : "La vérité est une chose trop sérieuse pour la confier entièrement aux théories mathématiques".
  • La plus grande contradiction de nos vies, la plus difficile à affronter, est peut-être la connaissance que "il y a eu une époque où je n'étais pas vivant, et il y aura une époque où je ne serai pas vivant".
  • La croyance plutôt orientale : "Le monde et moi ne sommes qu'un, et la notion de ma disparition est une contradiction intrinsèque". La croyance plutôt occidentale : "Je ne suis qu'une partie du monde, et je mourrai, mais après, le monde continuera sans moi"
  • Principe d'incertitude d'Heisenberg : implication : non-déterminisme et rôle de l'observation.
  • Magritte, La condition humaine : "C'est ainsi que nous voyons le monde : nous le voyons comme extérieur à nous, même si ce que nous éprouvons intérieurement n'en est qu'une représentation mentale"
  • Libre arbitre : "Le système X fait-il des choix ?"
  • Ce programme se surveille bien et a des idées sur ses idées, mais il n'est pas capable de surveiller tous les détails de ses processus et a donc une perception intuitive, et non pas une compréhension totale, de ses propres rouages. C'est cet équilibre entre la connaissance de soi et l'ignorance de soi que naît le libre arbitre.
  • Peu importe que le système fonctionne de façon déterministe ou non ; nous le qualifions de "choisisseur" si nous pouvons nous identifier à une description de haut niveau du processus qui se déroule pendant l'exécution du programme. A un bas niveau (celui du langage machine), le programme ressemble à n'importe quel autre programme; à un haut niveau (réunitarisé), des qualités comme la "volonté", l'"intuition", la "créativité" et la "conscience" peuvent émerger.
  • Escher a donc fait là une parabole graphique du Théorème d'incomplétude de Gödel. Voilà pourquoi les deux brins de Gödel et d'Escher sont si étroitement entremêlés dans mon livre.
  • Quand on croit que l'on sait tout, il y a toujours plus.
  • L'Offrande musicale est une fugue de fugues, une Hiérarchie Enchevêtrée comme celles d'Escher et de Gödel, une construction intellectuelle qui me rappelle, de façons inexprimables, la belle fugue à multiples voix qu'est l'esprit humain. Voilà pourquoi j'ai choisi, dans mon livre, de faire de Gödel, d'Escher et de Bach les trois brins d'une guirlande éternelle.

Ricercar à six voix

  • BABBAGE : polymath, mathématicien, inventeur et cryptanalyste.
  • Je me demande si vous accepteriez que j'essaie d'exécuter la tâche beaucoup moins grandiose consistant à multiplier MA PROPRE intelligence par six.

jeudi, août 14, 2025

Maturation de la vigne au 14 août 2025

  • Le prélèvement de maturation sur la parcelle de vigne a été effectué ce matin par mes soins. Voici les résultats sur un échantillon de 15 raisins pris en diagonale sur la parcelle :

Progression de 1 degré en 4 jours du 14/08 au 18/08 puis baisse de 1 degré (5mm de pluie) le 21/08


  • Par rapport à 2024, le niveau d'acide tartrique (AT) est supérieur, mais c'est le même degré pour un prélèvement qui avait été effectué le 3 septembre 2024. Le poids des raisins est aussi supérieur. On peut donc dire que la vigne à trois semaines d'avance par rapport à l'année dernière.
  • Il est tombé 4 mm de pluie cette nuit à Saint Ennemond. S'il pleut encore la semaine prochaine, les baies devraient grossir.
  • La vigne a souffert de la sécheresse cette année. Certains ceps, heureusement peu nombreux, n'ont plus de feuilles :


  • Le voisin utilise un robot pour désherber ses parcelles :


vendredi, août 01, 2025

Zen and the Art of Motorcycle Maintenance - Robert M. Pirsig

 

  • It's all of technology they can't take.
  • Somewhere are people who understand it and run it but those are technologists, and they speak an inhuman language when describing what they do.
  • You can't really think hard about what you're doing and listen to the radio at the same time.
  • When you want to hurry something, that means you no longer care about it and want to get on to other things. I just want to get at it slowly, but carefully and thoroughly.
  • If they can't stand physical discomfort and they can't stand technology, they've got a little compromising to do. They depend on technology and condemn it at the same time.
  • A hang-up. You just sit and stare and think, and search randomly for new information, and go away and come back again, and after a while the unseen factors start to emerge.
  • What we have here is a conflict of visions of reality. The world as you see it right here, right now, is reality, regardless of what the scientists say it might be.
  • What you've got here, really, are two realities, one of immediate artistic appearance and one of underlying scientific explanation and they don't match and they don't fit and they don't have much of anything to do with one another.
  • I want to divide human understanding into two kinds - classical understanding and romantic understanding.
  • Both are valid ways of looking at the world although irreconcilable with each other.
  • Mark Twain's experience comes to mind, in which, after he had mastered the analytic knowledge needed to pilot the Mississippi River, he discovered the river had lost its beauty. Something is always killed.
  • The ultimate purpose of life, which is to keep alive, is impossible, but that this is the ultimate purpose of life anyway, so great minds struggle to cure diseases so that people may live longer, but only madmen ask why. One lives longer in order that he may live longer. There is no other purpose.

Part II

  • To speak of certain government and establishment institutions as 'the system' is to speak correctly, since these organizations are founded upon the same structural conceptual relationships as a motorcycle. They are sustained by structural relationships even when they have lost all other meaning and purpose.
  • To revolt against a government because it is a system is to attack effects rather than causes ; and as long as the attack is upon the effects only, no change is possible.
  • If a revolution destroys a systematic government, but the systematic patterns of thought that produced that government are left intact, then those patterns will repeat themselves in the succeeding government. There's so much talk about the system. And so little understanding.
  • It's a good day to be alive.

9

  • hang up: contretemps
  • gee-whiz: révolutionnaire
  • juggernaut: pouvoir destructeur
  • lumbering: lourd
  • crank up: augmenter
  • bluffs: bosquets
  • That is induction: reasoning from particular experiences to general truths.
  • Repair problems are not that hard.
  • For this you keep a lab notebook. Everything gets written down, formally, so that you know at all times where you are, where you've been, where you're going and where you want to get.
  • Sometimes just the act of writing down the problems straightens out your head as to what they really are.
  • (1) statement of the problem, (2) hypotheses as to the cause of the problem, (3) experiments designed to test each hypothesis, (4) predicted results of the experiments, (5) observed results of the experiments and (6) conclusions from the results of the experiments.

10

  • baffled: perplexe
  • muddled: confus
  • fetters: chaînes
  • dreariness: monotone
  • creepers: plantes grimpantes
  • The state of mind which enables a man to do work of this kind is akin to that of the religious worshipper or lover. The daily effort comes from no deliberate intention or program, but straight from the heart.
  • What shortens the life-span of the existing truth is the volume of hypotheses offered to replace it.
  • The more you look, the more you see.
  • Sometimes I'd a little better to travel than to arrive.

11

  • timberline: cîme
  • creek: ruisseau
  • play tag: jouer au loup
  • aspen: tremble (arbre)
  • prow: proue
  • thatched: avec un toit de chaume
  • nod: signe de tête
  • cognizance: conscience
  • shiver: frissonner
  • stunted: rabougri
  • broad-leafed: feuillus
  • thaw: dégel
  • airtight: irréfutable
  • slumber: sommeil
  • nits: poux
  • It was at a level at which everything shifts and changes, at which institutional values and verities are gone and there is nothing but one's own spirit to keep one going. His early failure had released him from any felt obligation to think along institutional lines and his thoughts were already independent to a degree few people are familiar with. He felt that institutions such as schools, churches, governments and political organizations of every sort all tended to direct thought for ends other than truth, for the perpetuation of their own functions, and for the control of individuals it the service of these functions.
  • He was actively in pursuit of something now.
  • What does it all mean? What's the purpose of all this?
  • The primitive tribes permitted far less individual freedom than does modern society.
  • "That all our knowledge begins with experience there can be no doubt".
  • If I were  to go down to the bank and to ask to see my money they would look at me a little peculiarly. They don't have 'my money' in any little drawer that they can pull open to show me. 'My money' is nothing but some east-west and north-south magnetic domains in some iron oxide resting on a roll of tape in a computer storage bin. But I 'm satisfied with this because I've faith that if I need the thing that money enables, the bank will provide the means, through their checking system, of getting it.
  • Tu es libre quand tu obéis à la loi que tu t'imposes en tant qu'être rationnel.
  • Quel principe guide vraiment mon choix ?
  • Avec son inversion copernicienne, Kant fait de l'esprit humain le centre actif de la connaissance, non un simple miroir passif du monde extérieur.

12

  • whack: grand coup
  • to gloss over: passer rapidement
  • haywire: détraqué
  • whacky: dingue
  • miffed: vexé
  • flunk: rater
  • buff: musclé
  • cocksure: arrogant
  • blithely: gaiement
  • miter: assembler
  • honeysuckle: chèvrefeuille
  • He became aware that  the doctrinal differences among Hinduism and Buddhism and Taoism are not anywhere near as important as doctrinal differences among Christianity and Islam and Judaism.

13

  • fright: effroi
  • ludicrous: ridicule
  • rammed: bondé
  • hush: chut
  • kinship: parenté
  • contemptuous: méprisant
  • rumblings: grondements
  • You are never dedicated to something you have complete confidence in. No one is fanatically shouting that the sun is going to rise tomorrow. They know it’s going to rise tomorrow. When people are fanatically dedicated to political or religious faiths or any kinds of dogmas or goals, it’s always because these dogmas or goals are in doubt.

14

  • livestock: bétail
  • slant: pencher
  • grate: grille
  • trout: truite
  • marshmallow: guimauve
  • wistfully: avec mélancolie
  • to veer away: se déporter
  • non sequitur: sophisme
  • letdown: déception
  • nuts: cinglé
  • kindling: petit bois
  • brook: ruisseau 
  • slur: affront
  • expound: énoncer
  • to damn: condamner
  • chopped-up: émincé
  • contrive: planifier
  • speechify: discourir
  • ludicrous: absurde
  • ugliness: laideur
  • topsy-turvy: sans dessus dessous
  • to vilify: diffamer
  • quilt: couette
  • For me a period of depression comes on when I reach a temporary goal like this and have to reorient myself toward another one.
  • After you pick up skill, welding gives a tremendous feeling of power and control over the metal. You can do anything.
  • If the machine produces tranquillity it's right. If it disturbs you it's wrong until either the machine or your mind is changed.
  • The art of work is just as dependent upon your own mind and spirit as it is upon the material of the machine. That's why you need the peace of mind.
  • You look at where you're going and where you are and it never makes sense, but then you look back at where you've been and a pattern seems to emerge. And if you project forward from that pattern, then sometimes you can come up with something.

15

  • baffled: perplexe
  • to jell : se constituer
  • mimicry: imitation
  • eddy: tourbillon
  • perfunctorily: machinalement
  • backwash: contrecoup
  • spine-tingling: chair de poule
  • jolt: à coup
  • to trot: trotter
  • itsy-betsy: minuscule
  • wearily: avec lassitude
  • despondent: déprimé
  • We’ve all changed…so much since you left
  • That’s all over for me now. I’m doing other things

Part III

16

  • duff: litière
  • wrought: forgé
  • partridge: perdrix
  • dull: terne
  • drudge: bête de somme
  • stump: poser une colle
  • dismissal: licenciement
  • balky: entêté
  • nonplussed: perplexe
  • rote: répétition
  • to loaf: traîner
  • contemptuous: méprisant
  • hunch: intuition
  • to sprain an ankle: se fouler une cheville
  • There are as many routes as there are individuals souls.
  • For every fact there is an infinity of hypotheses. The more you look the more you see.
  • To force them to look within themselves, the only place they would ever get a really right answer.

17

  • marsh: marais
  • to crouch: s'accroupir
  • moose: élan
  • jagged: dentelé
  • to expound: énoncer
  • outline: contour
  • to jack up: augmenter
  • abode: demeure 
  • holiness: sainteté
  • selfless: désintéressé, altruiste
  • To live only for some future goal is shallow. It's the sides of the mountain which sustain life, not the top.
  • There is, in fact, no formal difference between inability to define and stupidity.
  • He did't know where he was going. All he knew was that it worked.
  • Any effort that has self-glorification as its final endpoint is bound to end in a disaster. When you try to climb mountain to prove how big you are, you almost never make it. And even if you do, it's a hollow victory. In order to sustain the victory you have to prove yourself again and again in some other way, and again and again and again, driven forever to fill a false image, haunted by the fear that the image is not true and someone will find out. That's never the way.

18

  • to recoil: reculer
  • to blather: jacasser
  • overcast: nuageux
  • thereupon: à ce sujet
  • to conjure up: faire apparaître
  • cleavage: scission
  • squareness: caractère carré
  • stave: échelon
  • groovy: stylé
  • cocky: trop sûr de soi
  • rubbery: caoutchouteux
  • flutter: battement
  • damp: humide
  • knoll: monticule
  • I think that the referent of a term that can split a world into hip and square, classic and romantic, technological and humanistic, is an entity that can unite a world already split along these lines into one. A real understanding of Quality doesn't just serve the System, or even beat it or even escape it. A real understanding of Quality captures the System, tames it, and puts it to work for one's own personal use, while leaving one completely free to fulfill his inner destiny.

19

  • to dispel: dissiper
  • knoll: monticule
  • ridge: crête
  • springy: bondissant
  • flunk out: être recalé
  • to despise: mépriser
  • smug: suffisant
  • forceful: déterminé
  • ominous: menaçant
  • to dash: se précipiter
  • He put it up on a kind of mental shelf where he put all kinds of questions he had no immediate answers for.

20

  • barren: stérile
  • creases: plis
  • spook: flanquer la trouille
  • eerie: étrange
  • fussbudget: maniaque
  • mesmerize: hypnotiser
  • fright: peur
  • faintheartedness: craintivité
  • fathomless: insondable
  • The silence allows you to do everything right.
  • Believe me, when the world is not seen as a duality of mind and matter but as a trinity of quality, mind, and matter, then the art of motorcycle maintenance and other arts take on a dimension of meaning they never had.
  • People differ about Quality, not because Quality is different, but because people are different in terms of experience.
  • The sudden accumulated mass of awareness began to grow and grow into an avalanche of thought and awareness out of control.

21

  • rind: peau
  • What I want to do now in the Chautauqua is get away from intellectual abstractions of an extremely general nature and into some solid, practical, day-to-day information, and I’m not quite sure how to go about this.

22

  • shattering: bouleversant
  • leeward: sous le vent
  • ascertainment: détermination
  • quandary: dilemme
  • serrated: en dents de scie
  • rutty: défoncé
  • wearily: péniblement
  • spill: flaque
  • logging: abattage
  • sheepish: penaud
  • twilight: crépuscule
  • Jules Henri Poincaré
  • Then it's the exception that becomes important. We seek not resemblances but differences, choose the most accentuated differences because they're the most striking and also the most instructive.
  • The subliminal self, Poincaré said, looks at the large number of solutions to a problem, but only interesting ones break into the domain of consciousness.
  • Poincaré judgment that the scientist selects facts, hypotheses and axioms on the basis of harmony.

24

  • hopelessness: désespoir
  • leaden feeling: sentiment lourd
  • shank: tige
  • stuck: bloqué
  • sledge: masse
  • folds: enclos
  • homespun: fait maison
  • sag: affaissement
  • gorgeous: superbe
  • hairpin: épingle à cheveux
  • crag: rocher escarpé
  • A person who sees Quality and feels it as he works is a person who cares.
  • The classic-romantic split that I think underlies the whole humanist-technological problem.
  • Quality is scientific reality. Quality is the goal of Art.
  • The leading edge is where absolutely all the action is.
  • You have to have a sense what's good. That is what carries you forward.
  • The technology of fifty and a hundred years ago, always seem to look so much better than the new stuff.

25

  • glare: lumière vive
  • dullness: monotonie
  • phony: faux
  • tinsel: guirlandes de Noël
  • mending: raccommodage
  • scrubby: broussailleux
  • scant: rare
  • groovy: stylé
  • contention: affirmation
  • ghastly: épouvantable
  • slant: pente
  • to resent: en vouloir
  • to fathom: comprendre
  • Actually a root word of technology, techne, originally meant 'art'. The ancient Greeks never separated art from manufacture in their minds, and so never developed separate words for them.
  • The answer is Phaedrus' contention that classic understanding should not be overlaid with romantic prettiness.
  • The passions, the emotions, the affective domain of man's consciousness, are a part of nature's order too. The central part.
  • The place to improve the world is first in one's own heart and head and hands, and then work outward from there.
  • Just a sort of unexplained sadness that comes each afternoon when the new day is gone forever and there's nothing ahead but increasing darkness.

26

  • dusty: poussiéreux 
  • wisp: mêche
  • guzzle: engloutir
  • gumption: courage, cran, bon sens. Avoir de la gumption: être pleinement engagé, motivé, avec un esprit clair
  • caliper: pied à coulisse
  • lathe: tour
  • goofed: faire une gaffe
  • to conjure up: évoquer
  • fussiness: caractère exigeant
  • ailment: affection, maladie
  • spic and span: impeccable
  • dingy: miteux
  • fidgety: agité
  • louse up : gâcher
  • nuts and bolts: écrous et boulons
  • studs: clous
  • tapped holes: trous taraudés
  • warped: déformé
  • stool: tabouret
  • licked: léché
  • sloppy: peu soigné
  • tailgating: coller une voiture
  • If you have a high evaluation of yourself then your ability to recognize new facts is weakened. Your ego isolates you from the Quality reality.
  • Anxiety, the next gumption trap, is sort of the opposite of ego. You're so sure you'll do everything wrong you're afraid to do anything at all.
  • You fix things that don't need fixing, and chase imaginary ailments. You jump to wild conclusions and build all kinds of errors into the machine because of your nervousness. These errors, when made, tend to confirm your underestimation of yourself.
  • When you make the mistakes yourself, you at least get the benefit of some education.
  • My favorite cure for boredom is sleep.
  • I enjoy troubleshooting more than most and dislike cleaning more than most.
  • Impatience is close to boredom but always results from one cause: an underestimation of time the job will take. Very few jobs get done as quickly as planned.
  • Yes or no confirms or denies an hypothesis. Mu says the answer is beyond the hypothesis.
  • Your understanding of the context of the question needs to be enlarged.
  • Buy good tools as you can afford them and you'll never regret it.
  • Pay attention to adequate lighting.
  • Its' the way you live that predisposes you to avoid the traps and see the right facts.
  • If you're a sloppy thinker the six days of the week you aren't working on your machine, what trap avoidances, what gimmicks, can make you all of a sudden sharp on the seventh? It all goes together.
  • But if you're a sloppy thinker six days a week and you really try to be sharp on the seventh, then may be the next six days aren't going to be quite as sloppy as the preceding six. What I'm trying to come up with on these gumption traps, I guess, is shortcuts to living right.
  • We've arrived at the West Coast! We're all strangers again! Folks, I just forgot the biggest gumption trap of all. The funeral procession! The one everybody's in, this hyped-up, fuck-you, super modern, ego style of life that thinks it owns this country. We've been out of it for so long I'd forgotten all about it.

Part IV

28

  • quivering: tremblant
  • loathsome: dégoutant
  • writh: se tordre
  • cognizance: conscience
  • lore: connaissance
  • lacy: en dentelle
  • wrenches: clés
  • dipstick: jauge de niveau
  • smother: étouffer
  • hark: écouter
  • weasel: fouine
  • skulk: rôder
  • capstone: pierre finale
  • rod: tige
  • stationery: fournitures de bureau
  • unbowed: insoumis
  • skimmed: écrémé
  • perjury: parjure
  • Don't throw anything away. Never, never throw anything away.

29

  • scabbard: fourreau
  • smithy: forge
  • hazy: brumeux
  • spectaculars: grands spectacles
  • bumblebees: bourdons
  • worth: valeur
  • endow: doter
  • drizzle: brune
  • raves: éloge
  • to dwell on: s'étendre sur
  • slight: affront
  • contempt: mépris
  • spite: méchanceté
  • awe: émerveillement
  • smugness: suffisance
  • stunt: cascade
  • wan: blême
  • chuckholes: nids de poules
  • dubious: douteux
  • likeness: ressemblance
  • enconium: louange
  • fouled up: faire foirer
  • shirttail: pan de chemise
  • to despise: mépriser
  • scent: parfum
  • quarry: carrière
  • edgy: nerveux
  • fulcrum: point d'équilibre 
  • feelers: antennes
  • cookery: cuisine
  • pandering: lêche bottes
  • pimping: maquereau
  • titter: gloussement
  • winnowing: sélectionner
  • sooty: couvert de suie
  • abhor: détester
  • to get over: oublier
  • misgivings: doutes
  • imperishable: impérissable
  • slain: tué
  • bereft: endeuillé
  • deeds: actes
  • wily: rusé
  • schemer: inspirateur
  • stout: fort
  • furrow: sillon
  • braggart: vantard
  • flay: fouetter
  • tugging: tirer sur
  • pristine: pur
  • Aretê: excellence, vertu, perfection; réaliser pleinement sa nature
  • It's paradoxal that where people are the most closely crowded, in the big coastal cities in the East and West, the loneliness is the greatest. The explanation, I suppose, is that the physical distance between people has nothing to do with loneliness. It's psychic distance, and in Montana and Idaho the physical distances are big, but the psychic distances between people are small, and here it's reversed.
  • My personal feeling is that this is how any further improvement of the world will be done: by individuals making Quality decisions and that's all.
  • We do need a return to individual integrity, self-reliance and old-fashioned gumption.
  • What are the three kinds of particular rhetoric?  'Forensic, deliberative and epideictic'
  • What are the epideitic techniques? 'The technique of identifying likeness, the technique of praise, that of encomium and that of amplification'
  • Phaedrus studied hard during this period, and learned extremely fast, and kept his mouth shut.
  • The Iliad is the story of the siege of Troy.
  • Duty towards self.
  • One can acquire some peace of mind from just watching that horizon.
  • We always condemn most in others, he thought, that which we most fearing ourselves.
  • Happiness and good are not objective terms.

30

  • womanish peevishness: irritabilité féminine
  • drab: morne
  • foil: faire-valoir
  • barren: stérile
  • outflank: contourner
  • rubbery: caoutchouteux
  • composure: calme
  • surly: bourru
  • spell: sort
  • timberline: cîme
  • scathingly: d'un ton cinglant
  • hedge: haie
  • loathsome: dégoûtant
  • ruts: ornières
  • eerie: étrange
  • They've been at it all their lives.
  • The white horse is temperate reason, the black horse is dark passion, emotion.
  • Aristotle's opinion is that dialectic comes before everything else.
  • A lifetime of blows tends to make a person unenthusiastic about any unnecessary interchange that might lead to more.
  • No one else can cross it for you. You've got to cross it by yourself.

31

  • slug: limace
  • slime: bave
  • to dawdle: traîner
  • dew: rosée
  • to recant: se rétracter
  • hazy: brumeux
  • contempt: mépris
  • wail: pleurs
  • teal: sarcelle
  • whine: sifflement
  • rag: chiffon

32

  • to enshroud: envelopper
  • groves: bosquets
  • to conk on the head: frapper à la tête
  • It's not as small as I think it is.
  • Is it hard? No if you have the right attitudes. It's having the right attitudes that's hard.
  • Trials never end, of course. Unhappiness and misfortune are bound to occur as long as people live.

Afterword

  • baffled: déconcerté
  • to confine: borner
  • to conceive: tomber enceinte
  • to recede: reculer
  • to mend: raccommoder
  • Who really can face the future? All you can do is project from the past, even when the past shows that such projections are often wrong. And who really can forget the past? What else is there to know?
  • It gives a positive goal to work toward that does not confine.
  • What is seen now so much more clearly is that although the names keep changing and the bodies keep changing, the larger pattern that holds us all together goes on and on.
  • It will take work, it will take time.
  • Reading is the enemy of writing.
  • www.moq.org

jeudi, juin 26, 2025

Mildiou sur grappe

  • Nous sommes le 26 juin 2025 et le mildiou a frappé sur quelques grappes de la parcelle. Difficile d'évaluer le pourcentage de dégâts.
  • L’intensité correspond à la somme des pourcentages des dégâts observés par grappes, divisée par le nombre de grappes observées. Donc quand on parle d’une intensité de 79 %, ça veut dire 79 % de perte par rapport au rendement initial. Alors que la fréquence correspond au nombre de grappes symptomatiques par rapport au nombre de grappes observées. Donc celle-ci peut être élevée sans pour autant qu’il y ait une grosse diminution du rendement.
  • Les images ci-dessous : 




vendredi, mai 30, 2025

L'heure des prédateurs - Giuliano Da Empoli

 

  • allogène : d'une origine différente de la population autochtone
  • interlope : dont l'activité n'est pas légale
  • luddite : ouvrier s'opposant aux techniques modernes
  • componction : sentiment profond de regret
  • La première loi du comportement stratégique est l'action. En situation d'incertitude, lorsque la légitimité du pouvoir est précaire et peut être remise en cause à tout moment, celui qui n'agit pas peut être sûr que les changements auront lieu à son désavantage.
  • Cambridge Analytica.
  • L'idée même d'une limite à la logique de la force, de la finance et des cryptomonnaies, à l'emballement de l'IA et des technologies convergentes, ou au basculement de l'ordre international vers la jungle, est sortie du domaine du concevable.
  • Il n'y a pratiquement aucune relation entre la puissance intellectuelle et l'intelligence politique.
  • La prise de risque est la seule vraie monnaie du jeu.
  • "On n'attend pas le bon moment pour se lancer. On se lance en espérant que ce sera le bon moment."
  • Ils parlent un langage inintelligible, dans le seul but de tromper les pauvres gens et, en fin de compte, ils ne s'occupent que de leurs propres affaires.
  • Aux Etats-Unis, les avocats sont la catégorie professionnelle la plus détestée, juste derrière les politiciens.
  • Augmenter la température pour multiplier l'engagement.
  • Alimenter le réchauffement du climat social.
  • "Moi je ne vois que ce que je crois" : lapsus Eric Zemmour.
  • "Qui ne sait pas dissimuler ne sait pas régner"
  • Comme les borgiens, l'IA se nourrit du chaos et en extrait la surprise.
  • Ils étaient habitués à l'idée qu'acquérir des informations est le meilleur moyen de réduire l'incertitude sur l'avenir.
  • Aujourd'hui, nous possédons de plus en plus d'informations et nous sommes de moins en moins capables de prédire l'avenir.
  • Les borgiens sont à l'aise, parce qu'ils se nourrissent du chaos.
  • Mais surtout le plaisir du contact humain, de sa chaleur et des surprises qu'il recèle. Tout le contraire des Asperger de la tech et de leur désir maniaque de transformer l'homme en machine.
  • Waze souffre d'Asperger : ses efforts sont concentrés sur un seul objectif.
  • Le Château s'approprie un bien public et le transforme en bénéfice privé.
  • "Il se peut que la lumière qui éclaire notre univers s'éteigne et que nous soyons plongés dans une obscurité pareille à celle de cette nuit. Peut-être même quelque cataclysme, pire que la guerre, est-il déjà déclenché et, dans l'âme humaine, partout, les choses évoluent-elles de telle façon que tout ce qui doit être réglé le sera par le feu et l'épée. Il se peut que cette réponse soit réellement arrivée." Sándor Márai, Les Braises.
  • "Les philosophes ne m'intéressent pas, je cherche des sages
  • Curzio Malaparte Technique du coup d'État

lundi, mai 05, 2025

Just Keep Buying - Nick Maggiulli

 


1. Where should you start? Why saving is for the poor and investing is for the rich

  • neuroticism: névrotisme

I. SAVING

  • If you are retired and can no longer work, you should spend more time on your investments.

2. How much should you save? It's probably less than you think.

  • overarching: prédominant
  • Phenoptypic plasticity, or the ability for an organism to change its physiology in response to its environment. When we have the ability to save more, we should save more, and when we don't, we should save less.
  • The biggest determinant of an individual's saving rate is the level of their income.
  • Earners in the bottom 20% saved 1% of their income annually while earners in the top 20% saved 24% of their income annually.
  • Save what you can.
  • The end result of this behavior is lots of money left to heirs.
  • This data suggest that the fear of running out of money in retirement is a bigger threat to retirees than actually running out of money.
  • Given the empirical research, the risk of running out of money for many current and future retirees remains low. This is why you probably need to save less than you think.

3. How to save more. The biggest lie in personal finance

  • foraging: cueillette
  • wiggle room: marge de manoeuvre
  • floss: fil dentaire
  • tout: racoler
  • The human body will adjust its total energy expenditure over time based on physical activity.
  • Despite the many documented health benefits of exercise, its effect on weight loss seems to be limited by human evolution.
  • Increases in income aren't followed by similar increases in spending.
  • Diminishing marginal utility: it means that each additional unit of consumption brings about less benefit than the unit before it. Personally I call it the law of stomach.
  • They are taking these outlier cases and passing them off as normal.
  • To save even more, think like an owner.
  • The end goal should be ownership, using your additional income to acquire more income-producing assets.

4. How to spend money guilt-free. The 2x Rule and maximizing fulfillment

  • unscathed: indemne
  • to splurge: faire une folie
  • Creates anxiety around spending money.
  • 20% of investors worth $5 million and $25 million were concerned about enough money to make it through requirement.
  • The 2x Rule works like this: Anytime I want to splurge (faire une folie) on something, I have to take the same amount of money and invest it as well. So, if I wanted to buy a $400 pair of dress shoes, I would also have to buy $400 worth of stocks (or other income-producing assets). This makes me re-evaluate how much I really want something because if I am not willing to save 2x for it, then I don't buy it.
  • Autonomy (being self-directed), mastery (improving your skills), and purpose (connecting to something bigger than yourself) are the key components to human motivation and satisfaction.
  • Your money should be used as a tool to create the life that you want.
  • The difficulty lies not in spending your money, but figuring out what you truly want out of life:
    • What kind of things do you care about?
    • What scenarios would you prefer to avoid?
    • What values do you want to promote in the world?
  • After all, it's not the purchase that makes you feel guilty, but how you justify that purchase in your head.
  • This is to ask yourself whether a given purchase will contribute to your long-term fulfillment.

5. How much lifestyle creep is okay? And why it's more than you think.

  • Lifestyle creep is when someone increases their spending after experiencing an increase in income or as a way of keeping up with their peers.
  • Why a savings goal of 25x annual spending can lead to a comfortable retirement.
  • This analysis assumes that you require 25 times your annual spending to retire, you get an annual raise of 3%, and your portfolio grows 4% a year.
  • Why you should save 50% of your raises.
    • The 2x rule states that before you buy something expensive, you should set aside a similar amount of money to buy income-producing assets.

6. Should you ever go into debt? Why credit card isn't always bad.

  • dry spells: vagues de chaleur
  • lineage: descendant
  • bet hedging: stratégie pour limiter les pertes dans un monde incertain.
  • thriftier: économe
  • The borrower is slave to the lender.
  • Some of the world's poorest people actually use debt as a way to save money. Many poor borrowers around the world used debt as a behavioral crutch to force themselves to save money.
  • Some people will always have a strong aversion towards debt even if they aren't in financial trouble.

7. Should you rent or should you buy? How to think about your biggest financial purchase

  • Home maintenance can take up more time than you might initially imagine.

8. How to save for a down payment (and other big purchases) Why your time horizon is so important

  • down payment: acompte, versement initial
  • Cash is the most sure-fire, lowest risk way to save for a big upcoming purchase.
  • Given that a two-year savings time horizon slightly favors cash and a five-year savings time horizon clearly favors bonds.
  • Why Time Horizon is the Most Important Factor

9. When can you retire? And why money isn't the most important factor

  • Why spending declines in retirement.
  • Crossover point because this is the point when your monthly income crosses over your monthly expenses to grant you financial freedom.
  • Your biggest concern during retirement is unlikely to be money anyway.
  • The bigger retirement concern:
    • Physical well- being, mental well-being, and solid social support play bigger roles than financial status for most retirees.
    • Zelinski's book suggests that it is not a financial crisis you need to worry about in retirement, but an existential one.
    • How will you spend your time?
    • What social groups will. you interact with?
    • What will be your ultimate purpose?
  • Though money can solve many of your problems, it' won't solve all of your problems. Money is merely a tool to help you get what you want out of life. Unfortunately, figuring out what you want out of life is the hard part.

II. INVESTING

10. Why should you invest? Three reasons why growing your money is more important than ever before

  • Saving for Your Future Self
  • Preserving Wealth Against Inflation
  • Replacing Your Human Capital with Financial Capital

11. What Should You Invest In? There is no one true path to wealth

  • Since the U.S. government can just print any dollars they owe at will, anyone who lends to them is virtually guaranteed to get their money back.
  • Lindy Effect states that something's popularity in the future is proportional to how long it has been around in the past.
  • The hard part about products as investments is that they require lots of work upfront with no guarantee of a payout. There is a long road to monetization.
  • Creating a product takes lots of time and effort.
  • Pros: full ownership. Personal satisfaction. Can create a valuable brand.
  • Gold, cryptocurrency, commodities, art, and wine have no reliable stream associated with their ownership.
  • The bulk of my investments (90%) are in income-producing assets, with the remaining 10% spread out in non-income-producing assets such as art and various cryptocurrencies.

12. Why you shouldn't buy individual stocks Why underperforming is the least of your worries

  • lull: accalmie
  • The mental turmoil.
  • Because Darren only bet what he was willing to lose, and he made sure that any such loses wouldn't affect his financial future.
  • By buying an index fund or ETF is usually a far better bet than trying to pick big winners among individual stocks.
  • Underperformance isn't a matter of it, but when.
  • Yes, you had skill in the past, but what about now?
  • The simplicity of indexing allows me to focus my attention on the things in life that are far more important than my portfolio.

13. How soon should you invest? And why earlier is better than later

  • And it was data that he collected.
  • Deep insight can be gleaned from one useful data point.
  • Every day you end up waiting to invest usually means higher prices you will have to pay in the future.
  • Invest what you can now.
  • "The best time to start was yesterday. The next best time is today"
  • The best timing approach is to invest your money as soon as you can.
  • The Average-In strategy generally underperforms Buy Now most of the time.
  • A higher standard deviation usually corresponds with a riskier investment or investment strategy.
  • The standard deviation of the Buy Now strategy is always higher than the Average-In strategy when investing in the S&P 500.
  • This is what investors want: outperformance, with lower risk.
  • When deciding between investing all your money now or over time, it is almost always better to invest it now.
  • Generally, the longer you wait to deploy your capital, the worse off you will be.
  • Investors won't be able to keep buying as the market falls anyway.
  • You should never wait to buy the dip.

14. Why you shouldn't wait to buy the dip. Even God couldn't beat dollar-cost averaging.

  • 1996-2019 and the 1928-1957 periods just happen to be two periods where there were prolonged, severe bear markets.
  • Buy the Dip typically underperforms DCA.
  • Saving cash to buy the dip is futile. You would be far better offf if you Just Keep Buying.
  • It's' generally better to invest sooner rather than later. Taken together, the conclusion is undeniable: you should invest as soon and as often as you can.

15. Why investing depends on luck And Why you shouldn't care

  • The importance of your future returns increases as you add more money.
  • The end is everything.
  • The investment returns during your first decade of retirement are so important.
  • Most markets go up most of the time.

16. Why you shouldn't fear volatility The price of admission for successful investing

  • bust: fiasco
  • Sometimes the biggest risk you can take is taking no risk at all.
  • If you want the upside - building wealth - you have to accept volatility and periodic declines that come with it.
  • In 2008 the S&P index was down 48%.
  • Markets won't give you a free ride without some bumps along the way. You have to experience some downside in order to earn your upside.
  • We have the ability to diversify.
  • Volatility is just a part of the game. It comes with the territory of being an investor.

17. How to buy during a crisis Why you should stay calm in a panic 

  • Just keep buying the next time there's blood in the streets.

18. When should you sell? On rebalancing, concentrated positions, and the purpose of investing

  • Taking less time to monitor your investments each year allows you to spend more time doing the things you enjoy.
  • Remove the emotion from the selling process.
  • Whatever you decide to do, don't sell all of it at once. Why? Because of the tax consequences and the possibility of regret if the price skyrockets.
  • To live the life that you want to live.
  • What's the point of investing if you never get to enjoy the results?
  • A safety net for you and your loved ones.
  • You could even buy your dream car if you want.
  • Each additional unit of consumption provides less happiness than the unit before. The same is true for wealth.
  • This is why going from $0 to $1 million in wealth provides a much bigger boost to someone's happiness than going from $1 million to $2 million.

20. Why you will never feel rich And why you probably are

  • eggnog: lait de poule
  • roaches: cafards
  • to abjure: renier
  • I know from experience that recognizing your wealth is always harder than it seems.
  • This was just like my friend John who couldn't see his wealth because all he knew growing up was being relatively poorer than his high school friends. Unfortunately, this feeling doesn't seem to go away even as you move further the wealth spectrum.
  • Most people at the upper end of the income spectrum think that they are less well off than they actually are.
  • Households above the 50th percentile (médiane) in income tend to underestimate how well they are doing relative to others.
  • Wealth perception as a network problem.
  • Why most people feel less popular than their friends: "Have you ever had the impression that other people have many more friends than you? If you have, you are not alone.
  • You are likely far richer than you think.
  • Because being rich is a relative concept.
  • This why no one feels rich. Because it's always easy to point at someone who is doing better.

21. The most important asset And why you'll never get any more of it

  • cryptic: énigmatique
  • treacherous: traître
  • Time is worth far more than money. Because you can do some things with time that you could never do with money. In fact, with enough time you could even move mountains (ce que je me disais quand j'étais jeune)
  • This is why time is, and always be, your most important asset.
  • I incorrectly believe that money was a more important asset than time.
  • Wealth isn't an absolute game, it's a relative game.
  • Over time, however, excessive optimism diminishes...People are not becoming depressed. They are becoming, well, realistic.

Conclusion: The just keep buying rules How to win the traveler's game

  • Saving is for the Poor, Investing is for the Rich
  • Save what you can
  • Focus on Income, not Spending
  • Use the 2x Rule to eliminate the spending guilt
  • Save at least 50% of your future raises and bonuses
  • Debt isn't Good or Bad, It depends on how you use it.
  • Only buy home when the time is right
  • When saving for a big purchase, Use Cash
  • Retirement is about more than money
  • Invest to replace your waning human capital with financial capital
  • Think like an Owner and Buy Income-Producing Assets
  • Don't Buy Individual Stocks
  • Buy Quickly, Sell Slowly
  • Invest As Often As You Can
  • Investing Isn't About The Cards You Are Dealt, but How You Play Your Hand
  • Don't Fear Volatility When It Inevitably Comes
  • Market Crashes Are (Usually) Buying opportunities
  • Fund the Life You Need Before You Risk it for the Life You Want.
  • You'll Never Feel Rich and That's Okay
  • Time is Your Most Important Asset
  • Every day we have to make financial decisions, without knowing what the future holds. We are constantly searching to find the best information that we can.